
A Turbo Pascal Task Scheduler

1. Introduction 2

2. System Criteria. 2

3. The Procedure Stack and Procedure Scheduling. 4

4. Error Messages 4

5. The Functions.and Procedures. 4

1. Introduction

This Turbo Pascal unit allows the programmer to do a crude form of
scheduling within a Turbo Pascal program. This is written in Turbo Pascal 4.0
and should do alright at 5.0. This unit can be used however you want, and
distributed freely, so long as there is no charge for it. I also make no claims
as to efficiency or bugs and will not be considered liable for use, misuse or
bugs in the code. So if you build an important application around this and
something goes wrong, don't expect to sue me, or expect that much help for
that matter. If you are writing applications for public domain or yourself, then
contact me through the BIBMUG BBS in Buffalo, New York and perhaps I'll
give you a hand. That's not meant to be nasty, I just don't want to be
beholden to anyone over this little bit of code.

First off, what does it do. This Unit allows you to schedule procedures
do be executed. These are executed according to specific scheduling criteria
established for each procedure and for the program as a whole. The way this
all works is that you

1. load the procedures with individual scheduling criteria
into the procedure stack using add_task.

2. set the system criteria (optional)
3. determine the current schedule point
4. execute the procedures that meet the system and current

scheduling criteria using run_tasks.

Sounds worse then it is.

2. System Criteria.

There are four types of system scheduling criteria. These are define by
the enum task_schedule_criteria. This is defined below :

 task_schedule_criteria = (
task_criteria_mod, {default.}

 task_criteria_equal,
task_criteria_more,
task_criteria_less);

The first criteria is task_criteria_mod for modulus. In this a procedure is
executed if (current criteria MOD task criteria) equals 0. This is useful for
scheduling procedures to run periodically. For example, assume proc_1 has a
task scheduling criteria of 10 and it is in code like this :

for i := 1 to 100 do

run_tasks(i);

Then proc_1 will be run 10 times, every 10 cycles of the loop. This would also
be useful in clock driven systems where every X clock ticks you execute a
procedure.

The next criteria is task_criteria_equal for equals. While the system is
in this mode, procedures whose task schedule number matches the current
schedule number will be executed. For example, say you have four
procedures proc1, proc2 proc3 and proc4 with scheduling criteria of 1,2,3
and 4 respectively. Now in this loop :

for i := 1 to 10 do
for j := 1 to 4 do

run_tasks(j);

each proc would be run once every cycle for a total of 10 times each in
succession. Another example is this :

for i := 1 to 10 do begin
if odd(i)

then j := 1
else j := 2;

run_tasks(j);
end;

where proc1 and proc2 alternate being executed, each running 5 times.
The last two criteria task_criteria_more and task_criteria_less are used

to set threshold conditions. Basically when these are set a procedure is
executed every time the current scheduling criteria is greater then or less
then the task's scheduling criteria. In the next example assume the system
scheduling criteria is task_criteria_less and there is a procedure called
fix_stuff in the stack whose task schedule criteria is 5 (make five fixes):

fixes := 1;
while true do begin {go until doomsday}

do_something;
run_tasks(fixes);
if fixed thenfixes := fixes + 1;
end;

As you can see the procedure fix_stuff will be run until five (5) fixes have
been made (whatever that means). Under optimal conditions one would
assume that means five times. Now if you expand this to include a proc
called bigfixes with a criteria of 10 then you'd get 5 fixes with 10 bigger
fixes. The task_criteria_more option works the same way in the opposite
direction. So in the above example, fix_stuff would not be executed until five

fixes were detected and bigfixes until 10 fixes were detected. This is also
useful for running a program that is clock driven but aperiodic. One could set
it so a program only executed after so many clock ticks had already
transpired.

3. The Procedure Stack and Procedure Scheduling.

Procedures are entered on the procedure stack using the procedure
add_tasks. The address of the procedure to be run and the scheduling
criteria (a longint number) are passed to it and a task number is returned.
The function itself returns an error code. A code of task_ok means it was
successfully added to the stack. Programs that meet the current and system
criteria are run in the order they appear on the stack. Thus the stack only
contains pointers to the procedures to be run and their scheduling criteria
and doesn't take up much space in memory. There is a limit of 100
procedures that can be placed on the stack. Attempting to add more would
result in an error of task_full from add_task. The task number is used for later
reference. The number of tasks is a constant task_limit that is currently set to
100.

All procedures placed on the stack must be of the same form. That is
procedure <procedure name>(schedule : longint); . Thus the current
scheduling criteria is the only information passed to the procedure, that is
the scheduling criteria passed to run_tasks. Any deviation will cause a
problem. Also any procedure that is to be placed on the stack must be
compiled with the {$F+} compiler option (force far calls). This allows the
program to search for the procedure outside the units' code segment. This is
important. If the F parameter isn't on, then the program will lock up and will
freeze up you PC.

4. Error Messages

A variety of error messages are available. They are constants that
return the following

task_ok = 0;
task_full = 1;
task_empty = 2;
task_illegal = 3;
task_none = 4;

The status task_ok shows that everything is alright. task_full is returned by
add_tasks to indicate that the stack is empty. task empty is returned by
run_tasks to show that there are no tasks to run. task_illegal is issued in
response to an illegal task number being used (if the number is < 1 or
greater the task_limit) and task_none is used as a result of attempting to
perform an operation on a task that hasn't been loaded into the stack such

as delete_task or change_schedule.

5. The Functions.and Procedures.

These are the functions and procedures that make up the tasks unit.

function add_task(schedule : longint; member : pointer;
 task_number : byte) : byte;

Add_task places a procedure on the stack and sets up its scheduling. It
returns a task number used for reference later and an error code (as part of
the function call). the scheduling criteria is a longint number and the
reference to the procedure is made by passing the address of the procedure
to add_tasks. Add_tasks returns either task_ok or task_full if the stack is full.
For example :

error := add_tasks(10, @proc1, task_num);
where proc 1 is defined as procedure proc1(schedule :longint);
if error = task_full

then writeln('Stack filled up');

The task number is used to refer to it later.

function add_task_number(task_number : byte;schedule : longint;
member : pointer) : byte;

Add_task_number places a procedure on the stack in the same way
that add_task does, but in a specific place. This is used to fill in the "holes"
left by deletes. It cannot be used to add a task to the end of the stack, only
add_task does that. The space for the intended addition must be unoccupied
(previously deleted) and legal. If it is occupied or in any way illegal, including
being the end of the stack a task_illegal message is returned.

function space_left : byte;

This tell you how much stack space is left for add_tasks. This does not
taking into account deleted tasks.

function first_space : byte;

This returns the place of the first open space or "hole". If there are no
open spaces then zero (0) is returned. If there are no deleted spaces then the
end of the stack is returned.

function delete_task(task_number : longint) : byte;

This deletes a task on the stack. The memory that it occupied is
released, and its space is free for another task. To fill it in later use

add_task_number, not add_task. Add task only adds to the end of the stack.
It returns task_illegal if you attempt to delete a task that isn't there or is out
of range.

function change_schedule(task_number : byte;
schedule : longint) : byte;

This function changes the scheduling criteria of the task task_number.
As in the other functions, task_illegal is returned if a bad task number is
passed to it. It replaces the old criteria with the new one.

procedure set_criteria(task_criteria : task_schedule_criteria);

Set_criteria set the system criteria which is of type
task_schedule_criteria. See System Criteria (chapter 2) for more information.

function run_tasks(schedule : longint) : byte;

This function run any procedure on the stack whose individual criteria
meet the current criteria in relation to the system criteria. For more
information on scheduling see above. This returns task_empty if there are no
tasks to run.

function run_task_number(task_number : byte) : byte;

This function executes task number <task_number> immediately
regardless of criteria. I'm not sure what this could be used for but, what the
heck. It automatically passes the value zero to your procedure.

Index
"hole"5
{$F+} compiler option4
Add_task4
Add_task_number5
Aperiodic3
BIBMUG BBS2
Change_schedule5
Delete_task5
error messages

error messages4
First_space5
Force far calls4
Functions4
Procedure stack4
Procedures4
Run periodically2
Run_task_number6
Run_tasks4, 6
Set_criteria6
Space_left5
System scheduling criteria2
Task_criteria_equal3
Task_criteria_less3
Task_criteria_mod2
Task_criteria_more3
Task_empty4
Task_full4
Task_illegal4
Task_limit4
Task_none4
Task_ok4
Task_schedule_criteria2
Threshold conditions3

